Convergencias y divergencias en la percepción de actores clave frente a los impactos de la industria acuícola. Caso de la mitilicultura en la Región de los Lagos, Chile
Palavras-chave:
“Perceptions”, “Aquaculture”, “Impacts”, “Risk”.Resumo
La rápida expansión en los niveles de producción de la industria acuícola podría generar impactos de distinta índole en las comunidades aledañas, incrementando las preocupaciones de los distintos agentes sobre sus potenciales consecuencias en los ámbitos sanitario, ambiental, y socioeconómico. Este artículo identifica y analiza las percepciones de un conjunto de actores clave en relación a los impactos generados por la industria mitilicultora en la Región de Los Lagos, Chile. Especial énfasis es entregado a identificar las convergencias y divergencias entre el juicio de expertos y las percepciones de actores del territorio en las dimensiones de interés. Información sobre los impactos y percepciones fue obtenida a través de entrevistas semiestructuradas y grupos focales dirigidos a una muestra de actores clave en los ámbitos gubernamental, científico, productivo y comunitario. Los resultados indican convergencia en una percepción negativa consensuada entre todos actores en relación al manejo de los residuos en la industria, quienes lo identifican también como un problema sanitario con potenciales efectos en la salud. Por su parte, mientras los científicos, funcionarios de gobierno y productores reconocen impactos positivos de la industria en la provisión de beneficios ecológicos, este aspecto no pareciera estar influenciando las percepciones de la comunidad debido a su bajo nivel de conocimiento sobre esta materia. En el ámbito socioeconómico, la generación de empleo está fuertemente vinculada a una percepción positiva del sector, lo cual es menos relevante en la producción a gran escala, debido principalmente a procesos de automatización en curso. Finalmente, los pequeños productores y representantes de las comunidades perciben una distribución desigual de los beneficios del sector, lo que incidiría en una percepción negativa de la industria.
Downloads
Referências
Alexander, K. A., Freeman, S., & Potts, T. (2016). Navigating uncertain waters: European public perceptions of integrated multi trophic aquaculture (IMTA). Environmental Science and Policy, 61, 230–237. https://doi.org/10.1016/j.envsci.2016.04.020
AmiChile (2024). Historia de la mitilicultura. https://amichile.com/industria-cloned-2694/ (recuperado el 14-08-2024).
Aranda, M.C., Casas-Cordero, E. y Stack, I. (2018). Establecimiento de las condiciones necesarias para el tratamiento y disposición de desechos generados por actividades d acuicultura. Proyecto FIPA Nª 2016-69. SUBPESCA.https://www.subpesca.cl/fipa/613/articles-96202_informe_final.pdf
Araneda, C., Larraín, M. A., Hecht, B., & Narum, S. (2016). Adaptive genetic variation distinguishes Chilean blue mussels (Mytilus chilensis) from different marine environments. Ecology and Evolution, 6(11). https://doi.org/10.1002/ece3.2110
Avdelas, L., Avdic‐Mravlje, E., Borges Marques, A. C., Cano, S., Capelle, J. J., Carvalho, N., Cozzolino, M., Dennis, J., Ellis, T., Fernández Polanco, J. M., Guillen, J., Lasner, T., Le Bihan, V., Llorente, I., Mol, A., Nicheva, S., Nielsen, R., Oostenbrugge, H., Villasante, S., … Asche, F. (2021). The decline of mussel aquaculture in the European Union: causes, economic impacts and opportunities. Reviews in Aquaculture, 13(1), 91–118. https://doi.org/10.1111/raq.12465
Banovic, M., Reinders, M. J., Claret, A., Guerrero, L., & Krystallis, A. (2019). “One Fish, Two Fish, Red Fish, Blue Fish”: How ethical beliefs influence consumer perceptions of “blue” aquaculture products? Food Quality and Preference, 77, 147–158. https://doi.org/10.1016/j.foodqual.2019.05.013
Barrett, G., Caniggia, M. I., & Read, L. (2002). “‘There are More Vets than Doctors in Chiloé’”: Social and Community Impact of the Globalization of Aquaculture in Chile. World Development, 30(11), 1951–1965. https://doi.org/10.1016/S0305-750X(02)00112-2
Beyer, L., Chan, C., LaPorte, P., & Lee, C. S. (2023). Assessing high school students’ perceptions and preferences for aquaculture versus wild-caught seafood: The case of Oʻahu, Hawaiʻi. Journal of the World Aquaculture Society. https://doi.org/10.1111/jwas.12949
Booncharoen, C., & Anal, A. K. (2021). Attitudes, perceptions and on‐farm self‐reported practices of shrimp farmers’ towards adoption of good aquaculture practices (Gap) in thailand. Sustainability (Switzerland), 13(9). https://doi.org/10.3390/su13095194
Borthagaray, A. I., & Carranza, A. (2007). Mussels as ecosystem engineers: their contribution to species richness in a rocky littoral community. Acta oecologica, 31(3), 243-250. https://doi.org/10.1016/j.actao.2006.10.008
Boxall, A. B. A. (2004). The environmental side effects of medication. EMBO Reports, 5(12), 1110–1116. https://doi.org/10.1038/sj.embor.7400307
Buasri, A., Chaiyut, N., Loryuenyong, V., Worawanitchaphong, P., & Trongyong, S. (2013). Calcium Oxide Derived from Waste Shells of Mussel, Cockle, and Scallop as the Heterogeneous Catalyst for Biodiesel Production. The Scientific World Journal, 2013(1). https://doi.org/10.1155/2013/460923
Buschmann, A. H., López, D. A., & Medina, A. (1996). A review of the environmental effects and alternative production strategies of marine aquaculture in Chile. Aquacultural Engineering, 15(6), 397–421. https://doi.org/10.1016/S0144-8609(96)01006-0
Bush, S. R., Belton, B., Little, D. C., & Islam, M. S. (2019). Emerging trends in aquaculture value chain research. Aquaculture, 498, 428–434. https://doi.org/10.1016/j.aquaculture.2018.08.077
Byron, C., Bengtson, D., Costa-Pierce, B., & Calanni, J. (2011). Integrating science into management: ecological carrying capacity of bivalve shellfish aquaculture. Marine Policy, 35(3), 363-370. https://doi.org/10.1016/j.marpol.2010.10.016
Cantillo, J., Martín, J. C., & Román, C. (2023). Understanding consumers’ perceptions of aquaculture and its products in Gran Canaria island: Does the influence of positive or negative wording matter? Aquaculture, 562. https://doi.org/10.1016/j.aquaculture.2022.738754
Cárdenas-Retamal, R., Dresdner-Cid, J., & Ceballos-Concha, A. (2021). Impact assessment of salmon farming on income distribution in remote coastal areas: The Chilean case. Food Policy, 101, 102078. https://doi.org/10.1016/j.foodpol.2021.102078
Ceballos, A., Dresdner-Cid, J. D., & Quiroga-Suazo, M. Á. (2018). Does the location of salmon farms contribute to the reduction of poverty in remote coastal areas? An impact assessment using a Chilean case study. Food Policy, 75, 68–79. https://doi.org/10.1016/j.foodpol.2018.01.009
Chikudza, L., Gauzente, C., Guillotreau, P., & Alexander, K. A. (2020). Producer perceptions of the incentives and challenges of adopting ecolabels in the European finfish aquaculture industry: A Q-methodology approach. Marine Policy, 121. https://doi.org/10.1016/j.marpol.2020.104176
Cursach, J., Suazo, C., Rau, J., Tobar, C., & Gantz, A. (2011). Ensamble de aves en una mitilicultura de Chiloé, sur de Chile. Biología Marina y Oceanografía, 46(2), 243–247. http://dx.doi.org/10.4067/S0718-19572011000200013
Dame, R., Dankers, N., Prins, T., Jongsma, H., & Smaal, A. (1991). The influence of mussel beds on nutrients in the Western Wadden Sea and Eastern Scheldt estuaries. Estuaries, 14, 130-138. https://doi.org/10.2307/1351686
Delgado, L. E., Zúñiga, C. C., Asún, R. A., Castro-Díaz, R., Natenzon, C. E., Paredes, L. D., Pérez-Orellana, D., Quiñones, D., Sepúlveda, H. H., Rojas, P. M., Olivares, G. R., & Marín, V. H. (2021). Toward social-ecological coastal zone governance of Chiloé Island (Chile) based on the DPSIR framework. Science of The Total Environment, 758, 143999. https://doi.org/10.1016/j.scitotenv.2020.143999
Dresdner, J., O. Barriga, Y. Figueroa, N. González, K. Yubini. (2017). “Estimación de empleo asociado a la industria miticultora nacional”. Informe Final. Fondo de Investigación Pesquera y de la Acuicultura. Proyecto FIPA 2016-56, 230 pp., sin anexos. https://www.subpesca.cl/fipa/613/articles-96196_informe_final.pdf
Estay, M., & Chávez, C. (2017). Location decisions and regulatory changes: the case of the Chilean aquaculture. Latin American Journal of Aquatic Research, 43(4), 700–717. https://doi.org/10.3856/vol43-issue4-fulltext-9
FAO. (2022). El estado mundial de la pesca y la acuicultura 2022. Organización de Las Naciones Unidas Para La Alimentación y La Agricultura. https://www.fao.org/3/cc0461es/online/sofia/2022/aquaculture-production.html
Fernández, F. J., Muñoz, M., Ponce Oliva, R. D., Vásquez-Lavín, F., & Gelcich, S. (2023). Mapping Firms’ adaptive profiles: The role of experiences and risk perception in the aquaculture industry. Aquaculture, 562. https://doi.org/10.1016/j.aquaculture.2022.738802
Franco, M. (2006, June). La miticultura en Galicia: Una actividad de éxito y con futuro. Revista Galega de Economía. https://www.redalyc.org/articulo.oa?id=39115116
Froehlich, H. E., Gentry, R. R., Rust, M. B., Grimm, D., & Halpern, B. S. (2017). Public perceptions of aquaculture: Evaluating spatiotemporal patterns of sentiment around the world. PLoS ONE, 12(1). https://doi.org/10.1371/journal.pone.0169281
Fuenzalida, G., Yarimizu, K., Norambuena, L., Fujiyoshi, S., Perera, I. U., Rilling, J.-I., Campos, M., Ruiz-Gil, T., Vilugrón, J., Sandoval-Sanhueza, A., Ortiz, M., Espinoza-González, O., Guzmán, L., Acuña, J. J., Jorquera, M. A., & Maruyama, F. (2024). Environmental evaluation of the Reloncaví estuary in southern Chile based on lipophilic shellfish toxins as related to harmful algal blooms. Science of The Total Environment, 928, 172374. https://doi.org/10.1016/j.scitotenv.2024.172374
Funk, L., Wilson, A. M. W., Gough, C., Brayne, K., & Djerryh, N. R. (2022). Perceptions of access and benefits from community-based aquaculture through Photovoice: A case study within a locally managed marine area in Madagascar. Ocean and Coastal Management, 222. https://doi.org/10.1016/j.ocecoaman.2022.106046
Garlock, T., Asche, F., Anderson, J., Bjørndal, T., Kumar, G., Lorenzen, K., Ropicki, A., Smith, M. D., & Tveterås, R. (2020). A Global Blue Revolution: Aquaculture Growth Across Regions, Species, and Countries. Reviews in Fisheries Science and Aquaculture, 28(1), 107–116. https://doi.org/10.1080/23308249.2019.1678111
Gérard, K., Bierne, N., Borsa, P., Chenuil, A., & Féral, J. P. (2008). Pleistocene separation of mitochondrial lineages of Mytilus spp. mussels from Northern and Southern Hemispheres and strong genetic differentiation among southern populations. Molecular Phylogenetics and Evolution, 49(1). https://doi.org/10.1016/j.ympev.2008.07.006
Gonzalez-Poblete, E., Hurtado F., C. F., Rojo S., C., & Norambuena C., R. (2018). Blue mussel aquaculture in Chile: Small or large scale industry? Aquaculture, 493, 113–122. https://doi.org/10.1016/j.aquaculture.2018.04.026
Joffre, O. M., De Vries, J. R., Klerkx, L., & Poortvliet, P. M. (2020). Why are cluster farmers adopting more aquaculture technologies and practices? The role of trust and interaction within shrimp farmers’ networks in the Mekong Delta, Vietnam. Aquaculture, 523, 735181. https://doi.org/10.1016/j.aquaculture.2020.735181
Krøvel, A. V., Gjerstad, B., Skoland, K., Lindland, K. M., Hynes, S., & Ravagnan, E. (2019). Exploring attitudes toward aquaculture in Norway – Is there a difference between the Norwegian general public and local communities where the industry is established? Marine Policy, 108, 103648. https://doi.org/10.1016/j.marpol.2019.103648
Lavaud, R., Ullman, D. S., Venolia, C., Thornber, C., Green-Gavrielidis, L., & Humphries, A. (2023). Production potential of seaweed and shellfish integrated aquaculture in Narragansett Bay (Rhode Island, U.S.) using an ecosystem model. Ecological Modelling, 481. https://doi.org/10.1016/j.ecolmodel.2023.110370
Lindahl, O., Hart, R., Hernroth, B., Kollberg, S., Loo, L. O., Olrog, L., Rehnstam-Holm, A., Svensson, J., Svensson, S. & Syversen, U. (2005). Improving marine water quality by mussel farming: a profitable solution for Swedish society. AMBIO: A Journal of the Human Environment, 34(2), 131-138. https://pubmed.ncbi.nlm.nih.gov/15865310/
Martinez-Porchas, M., & Martinez-Cordova, L. R. (2012). World aquaculture: environmental impacts and troubleshooting alternatives. The Scientific World Journal, 2021, 1-9. https://doi.org/10.1100/2012/389623
McSherry, M., Davis, R. P., Andradi-Brown, D. A., Ahmadia, G. N., Van Kempen, M., & Wingard Brian, S. (2023). Integrated mangrove aquaculture: The sustainable choice for mangroves and aquaculture? Frontiers in Forests and Global Change, 6. https://doi.org/10.3389/ffgc.2023.1094306
Mella, O. (2003). Metodología cualitativa en ciencias sociales y educación: orientaciones teórico-metodológicas y técnicas de investigación (Primus., Ed.; 1a. Ed.).
Mejillón de Chile (2024). La industria del mejillón Chile, el principal exportador mundial de mejillones. https://mejillondechile.cl/industria/ (recuperado el 14-08-2024).
Mirto, S., Montalto, V., Mangano, M. C. M., Ape, F., Berlino, M., La Marca, C., Lucchese, M., Maricchiolo, G., Martinez, M., Rinaldi, A., Terzo, S. M. C., Celic, I., Galli, P., & Sarà, G. (2022). The stakeholder’s perception of socio-economic impacts generated by COVID-19 pandemic within the Italian aquaculture systems. Aquaculture, 553. https://doi.org/10.1016/j.aquaculture.2022.738127
Murray, L. G., Newell, C. R., & Seed, R. (2007). Changes in the biodiversity of mussel assemblages induced by two methods of cultivation. Journal of Shellfish Research, 26(1), 153-162. https://doi.org/10.2983/0730-8000(2007)26[153:CITBOM]2.0.CO;2
Olsen, M. S., Amundsen, V. S., & Osmundsen, T. C. (2023). Exploring public perceptions and expectations of the salmon aquaculture industry in Norway: A social license to operate? Aquaculture, 574. https://doi.org/10.1016/j.aquaculture.2023.739632
Opitz, T., Benítez, S., Fernández, C., Osores, S., Navarro, J. M., Rodríguez-Romero, A., Lohrmann, K. B., & Lardies, M. A. (2021). Minimal impact at current environmental concentrations of microplastics on energy balance and physiological rates of the giant mussel Choromytilus chorus. Marine Pollution Bulletin, 162, 111834. https://doi.org/10.1016/j.marpolbul.2020.111834
Ozolina, Z., & Kokaine, L. (2019). Socioeconomic impact of mussel farming in coastal areas of baltic sea. https://www.submariner-network.eu/images/BBG_socioeconomic_V1.pdf
Paez-Osuna, F. (2001). The Environmental Impact of Shrimp Aquaculture: Causes, Effects, and Mitigating Alternatives. Environmental Management, 28(1), 131–140. https://doi.org/10.1007/s002670010212
Pellicer, I., Vivas-Elias, P., & Rojas, J. (2013). La observación participante y la deriva: dos técnicas móviles para el análisis de la ciudad contemporánea. El caso de Barcelona. EURE (Santiago), 39(116), 119–139. https://doi.org/10.4067/S0250-71612013000100005
Petersen, J., Saurel, C., Nielsen, P. and Timmermann, K. (2016). The use of shellfish for eutrophication control. Aquaculture International, 24, 857–878. https://doi.org/10.1007/s10499-015-9953-0
Primavera, J. H. (2006). Overcoming the impacts of aquaculture on the coastal zone. Ocean & Coastal Management, 49(9–10), 531–545. https://doi.org/10.1016/j.ocecoaman.2006.06.018
ProChile. (2021, August 12). Destacado en presa: Chile se convierte en el mayor proveedor mundial de 28 productos liderados por cobre, cerezas y salmón. Ministerio de Relaciones Exteriores. https://www.df.cl/economia-y-politica/macro/chile-no-es-solo-cobre-cerezas-o-salmon-los-otros-productos-en-los-que
Puri, V., Juan, M., Catarina, R.-O., Leandro, S., & Rubal, M. (2021). Public perception of ecosystem services provided by the Mediterranean mussel Mytilus galloprovincialis related to anthropogenic activities. PeerJ, 9, e11975. https://doi.org/10.7717/peerj.11975
Reardon, T., Echeverria, R., Berdegué, J., Minten, B., Liverpool-Tasie, S., Tschirley, D., & Zilberman, D. (2019). Rapid transformation of food systems in developing regions: Highlighting the role of agricultural research & innovations. Agricultural Systems, 172, 47–59. https://doi.org/10.1016/j.agsy.2018.01.022
Reinders, M. J., Banović, M., Guerrero, L., & Krystallis, A. (2016). Consumer perceptions of farmed fish: A cross-national segmentation in five European countries. British Food Journal, 118(10), 2581–2597. https://doi.org/10.1108/BFJ-03-2016-0097
Rose, J., Bricker, S., Ferreira, J. (2015). Comparative analysis of modeled nitrogen removal by shellfish farms. Marine Pollution Bulletin, 91, 185–190. https://doi.org/10.1016/j.marpolbul.2014.12.006
Salgado, H., Bailey, J., Tiller, R., & Ellis, J. (2015). Stakeholder perceptions of the impacts from salmon aquaculture in the Chilean Patagonia. Ocean and Coastal Management, 118, 189–204. https://doi.org/10.1016/j.ocecoaman.2015.07.016
Stankovic, S., Jovic, M., Stankovic, A. R., & Katsikas, L. (2012). Heavy metals in seafood mussels. Risks for human health. Environmental Chemistry for a Sustainable World: Volume 1: Nanotechnology and Health Risk, 311-373. https://doi.org/10.1007/978-94-007-2442-6_9
SERNAPESCA. (2021). Anuarios Estadísticos de Pesca y Acuicultura. Anual. Sernapesca, Subsector Acuicultura. Cosechas de Centros de Acuicultura Por Especie y Región. . http://www.sernapesca.cl/informacion-utilidad/anuarios-estadisticos-de-pesca-y-acuicultura
Schernewski, G., Inácio, M., & Nazemtseva, Y. (2018). Expert based ecosystem service assessment in coastal and marine planning and management: a Baltic lagoon case study. Frontiers in Environmental Science, 6, 1-14. https://doi.org/10.3389/fenvs.2018.00019
Suplicy, F. M. (2020). A review of the multiple benefits of mussel farming. Reviews in Aquaculture, 12(1), 204–223. https://doi.org/10.1111/raq.12313
Turkowski, K. (2021). Fish farmers’ perception of ecosystem services and diversification of carp pond aquaculture: A case study from warmia and mazury, Poland. Sustainability (Switzerland), 13(5), 1–16. https://doi.org/10.3390/su13052797
Urra, E., Núñez, R., Retamal, C., & Jure, L. (2014). Case study approaches in nursing research. Ciencia y Enfermeria, 20(1). https://doi.org/http://dx.doi.org/10.4067/S0717-95532014000100012
Van Cauwenberghe, L., & Janssen, C. R. (2014). Microplastics in bivalves cultured for human consumption. Environmental pollution, 193, 65-70. https://doi.org/10.1016/j.envpol.2014.06.010
Weitzman, J., & Bailey, M. (2018). Perceptions of aquaculture ecolabels: A multi-stakeholder approach in Nova Scotia, Canada. Marine Policy, 87, 12–22. https://doi.org/10.1016/j.marpol.2017.09.037
Weitzman, J., Filgueira, R., & Grant, J. (2022). Identifying key factors driving public opinion of salmon aquaculture. Marine Policy, 143, 105175. https://doi.org/10.1016/j.marpol.2022.105175
Wood, S. E., & Filgueira, R. (2022). Drivers of social acceptability for bivalve aquaculture in Atlantic Canadian communities. Ecology and Society, 27(3). https://doi.org/10.5751/ES-13358-270309
Xu, H., Zhao, D., Zeng, J., Mao, Z., Gu, X., & Wu, Q. L. (2022). Evaluating the effects of aquaculture on the freshwater lake from the perspective of plankton communities: The diversity, co-occurrence patterns and their underlying mechanisms. Environmental Pollution, 309. https://doi.org/10.1016/j.envpol.2022.119741
Xuan, B. B., Sandorf, E. D., & Ngoc, Q. T. K. (2021). Stakeholder perceptions towards sustainable shrimp aquaculture in Vietnam. Journal of Environmental Management, 290. https://doi.org/10.1016/j.jenvman.2021.112585
Yu, Y., Tian, D., Yu, Y., Lu, L., Shi, W., & Liu, G. (2024). Microplastics aggravate the bioaccumulation and corresponding food safety risk of antibiotics in edible bivalves by constraining detoxification-related processes. Science of The Total Environment, 908, 168436. https://doi.org/10.1016/j.scitotenv.2023.168436
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Revista de Geografía Norte Grande
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.