Dinámica espacio-temporal de los cambios en la cubierta vegetal y usos de suelo asociados al fracking en las cuencas de Burgos, México y Neuquina, Argentina

Authors

DOI:

https://doi.org/10.4067/S0718-34022023000300114

Keywords:

fracking, vegetation cover, land use, Burgos basin, Neuquina basin

Abstract

Despite multiple impacts associated with hydraulic fracturing, in Latin America this technique was widely implemented in some of the hydrocarbon-producing countries in this region. Among the impacts associated with fracking are the loss of vegetation cover and the change in land use. The analysis was based on representative samples made up of 10 oil fields, in two of the hydrocarbon zones with the greatest implementation of hydraulic fracturing, in two of the Latin American countries with the largest unconventional hydrocarbon reserves, the Neuquina basin, Argentina and the Burgos basin, Mexico. The samples were compared by means of land cover maps, designed from the interpretation of Landsat images in three different temporalities (2002, 2013 and 2019). In the samples from both basins, an increase in the elimination of the original vegetation cover was found, as well as a decrease in agriculture, during the period of greatest expansion of the technique.

Downloads

Download data is not yet available.

Author Biography

Humberto Reyes Hernández, Universidad Autónoma de San Luis Potosí (México)

Licenciatura en Geografía. Posgrado Multidisciplinario en Ciencias Ambientales. Posgrado en Estudios Latinoamericanos en Territorio, Sociedad y Cultura.

References

ACACIO, J. y SVAMPA, F. Hidrocarburos no convencionales y fracking: Estado, empresas y tensiones territoriales en la Patagonia argentina. Cuestiones De Sociología, 2017 (17), 1-20. Recuperado de https://doi.org/10.24215/23468904e038
AGUILAR, S. Fórmulas para el cálculo de la muestra en investigaciones de salud. Salud en Tabasco, 2005, 11 (1-2), 333-338. Recuperado de https://www.redalyc.org/articulo.oa?id=487/48711206
BENAVIDES, P., GEBRESLASSIE, B. y DIWEKAR, U. Optimal design of adsorbents for NORM removal from produced water in natural gas fracking. Part 1: Group contribution method for adsorption. Chemical Engineering Science 2015, 137, 964-976. Recuperado de https://www.researchgate.net/publication/282621966_Optimal_design_of_adsorbents_for_NORM_removal_from_produced_water_in_natural_gas_fracking_Part_2_CAMD_for_adsorption_of_radium_and_barium
BOGACKI, M. y MACUDA, J. The influence of shale rock fracturing equipment operation on atmospheric air quality. Archives of Mining Sciences 2014, 59 (4), 897-912. Recuperado de https://www.researchgate.net/publication/279039628_The_Influence_of_Shale_Rock_Fracturing_Equipment_Operation_on_Atmospheric_Air_Quality
COMISIÓN NACIONAL PARA EL CONOCIMIENTO Y EL USO DE LA BIODIVERSIDAD, 2020. Sistema Nacional de Información sobre Biodiversidad [SNIB]. Portal de Geoinformación. Recuperado de http://www.conabio.gob.mx/informacion/gis/
CONSEJO NACIONAL DE INFORMACIÓN DE HIDROCARBUROS [CNIH] (2020). Mapa Hidrocarburos (IICNIH), 2020. Recuperado de https://mapa.hidrocarburos.gob.mx/
CUEVAS, I. Una visión del fracking desde la geología [archivo de video], 2013, octubre, 13. Recuperado de https://culturacientifica.com/2013/12/22/una-vision-del-fracking-desde-la-geologia/
CURRIE, J., GREENSTON, M. y MECKEL K. Hydraulic fracturing and infant health: New evidence from Pennsylvania. Science Advances, 2017 3(12), 1-9. Recuperado de https://advances.sciencemag.org/content/3/12/e1603021.full
EGUÍLUZ, S. “Sinopsis geológica de la Cuenca de Burgos, noreste de México: producción y recursos petroleros” Boletín de la Sociedad Geológica Mexicana 2011, 63(2), 323-332. https://www.redalyc.org/articulo.oa?id=94321479012
ENERGY INFORMATION ADMINISTRATION. World Shale Resource Assessments, 2015. Disponible en: https://www.eia.gov/analysis/studies/worldshalegas/
ENVIROMENTAL RESEARCH SYSTEM INSTITUTE [ESRI]. Qué es un shapefile, 2016. Recuperado de
https://desktop.arcgis.com/es/arcmap/10.3/manage-data/shapefiles/what-is-a-shapefile.htm
ELLSWORTH, W. Injection-Induced Earthquakes. Science, 2013, 341(6142), 142.
DOI: 10.1126/science.1225942
ESCANDÓN, J., ORDOÑEZ, J., DE CARMEN NIETO, M. y ORDOÑEZ, M. Cambio en la cobertura vegetal y uso del suelo del 2000 al 2009 en Morelos, México. Revista Mexicana de Ciencias Forestales, 2018. DOI: https://doi.org/10.29298/rmcf.v9i46.135
ESTRADA, J. Desarrollo del gas lutita (shale gas) y su impacto en el mercado energético de México: reflexiones para Centroamérica, 2013. Recuperado de https://repositorio.cepal.org/handle/11362/27184?locale-attribute=es
FISHER, M., MAYER, A., VOLLET, K., HILL, E. y HAYNES, E. Psychosocial implication of unconventional gas development: Quality of life in Ohio´s Guernsey and Nobel Counties, Journal of Environmental Psychology, 2018, 55, 90-98. Recuperado de http://www.hpaf.co.uk/wp-content/uploads/2018/01/Psychosocial-implications-of-unconventional-natural-gas-development_-Quality-of-life-in-Ohios-Guernsey-and-Noble-Counties.pdf
GILFILLAN, S. y HASZELDINE, S. (inédito). Report on EU Horizon 2020 funded FracRisk fact-finding visit to Eureka Resources Standing Stone Gas Well wastewater treatment Facility. University of Edinburgh.
GREEN, J. Radiation risks and fracking waste streams, 2017. Recuperado de https://frackinginquiry.nt.gov.au/?a=423147
HALLIBURTON. Integrated well intervention, s.f. Recuperado de https://www.halliburton.com/en-US/ps/project-management/project-management/integrated-well-intervention.html
HOLLANDER, M., WOLFE, D. y CHICKEN, E. Nonparametric Statistical Methods (Tercera edición). New Jersey: John Wiley & Sons, 1973.
HOWARTH, R., SANTORO, R. y INGRAFFEA, A. Methane and the Greenhouse-Gas Footprint of Natural Gas from Shale Formations. Climatic Change. 2011, 106 (4), 679-690.
HOWELL, J., SCHWARZ, E., SPALLETTI, L. y VEIGA, G. The Neuquen Basin: an overview. Geological Society London Special Publications 2005 252(1), 1-14. Recuperado de https://www.researchgate.net/publication/228707509_The_Neuquen_Basin_An_overview
HULTMAN, N., REBOIS, D., SCHOLTEN, M. y RAMIG, C. The greenhouse impact of unconventional gas for electricity generation. Environmental Research Letters 6 2011, (4), 1-9
INGRAFFEA, A. Los riesgos del fracking [archivo de video], 2019, marzo 4. Recuperado de: https://nofrackingmexico.org/documentos-y-publicaciones/videos/
INTERNATIONAL ENERGY AGENCY [IEA] y ENERGY TECHNOLOGY SYSTEMS ANALYSIS PROGRAMME [ETSAP]. Unconventional Oil & Gas Production, 2010. Recuperado de https://iea-etsap.org/E-TechDS/PDF/P02-Uncon_oil&gas-GS-gct.pdf
INSTITUTO GEOGRÁFICO NACIONAL [IGN]. Capas SIG, 2020. Recuperado de https://www.ign.gob.ar/NuestrasActividades/InformacionGeoespacial/CapasSIG
KERANEN, K., SAVAGE, H., ABERS, G. y COACHRAN, E. (2013). Potentially induced earthquakes in Oklahoma, USA: Links between wastewater injection and the 2011 Mw 5.7 earthquake sequence. Geology, 2013, 41 (6), 609-702.
MATESANZ CAPARROZ J. (inédito). Repercusiones territoriales de la fractura hidráulica o fracking en Cantabria, Burgos y Palencia. Los Permisos de Investigación Bezana y Bigüenzo. Universidad Complutense de Madrid. Disponible en: https://eprints.ucm.es/23795/1/Fracking_pdf.pdf
MAS J.F. Análisis espacial con R: Usa R como un Sistema de Información Geográfica. Macedonia. European Scientific Institute, 2018.
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [NASA]. The Worldwide Reference System, s.f.. Recuperado de: https://landsat.gsfc.nasa.gov/about/worldwide-reference-system
O´DONNELL, M., GILFILLAN, S., EDLMANN, K. and MCDERMOTT, C. Wastewater from hydraulic fracturing in the UK: assessing the viability and cost of management. Science Water Research & Technology, 2018, 4, 325-335.
PAZ, M., BAEZI, A., PINO, D., YUNES, Y., GARAT, L., PONCE J. y TUNIK, M. Análisis sedimentológico de depósitos lacustres y eólicos del cretácico tardío en la localidad paso córdoba, cuenca neuquina. Revista de la Asociación Geológica Argentina 2014, 71 (4), 459-471. Disponible en: https://ppct.caicyt.gov.ar/index.php/raga/article/view/2485
PATEL, S. Of Fracking, Earthquakes, and Carbon Sequestration. Power, Business & Technology for the Global Generation Industry, 2009. Disponible en: https://www.powermag.com/of-fracking-earthquakes-and-carbon-sequestration/
PETRÓLEOS MEXICANOS [PEMEX]. Proyecto integral Cuenca de Burgos Estudio de Impacto Ambiental 2004-2022, s.f. Recuperado de http://sinat.semarnat.gob.mx/dgiraDocs/documentos/tamp/estudios/2004/28TM2004X0006.pdf
QGIS.ORG. QGIS Geographic Information System (QGIS 3.10.4-A Coruña). QGIS Association, 2021. Recuperado de http://www.qgis.org
R CORE TEAM. R: A language and environment for statistical computing (3.5.3 -- “Great Truth”). x86_64-w64-mingw32/x64 (64-bit). Foundation for Statistical Computing, Vienna, Austria, 2019. Recuperado de https://www.R-project.org/.
REYES, H., AGUILAR-ROBLEDO, M., AGUIREE, J, y TREJO, I. Cambios en la cubierta vegetal y uso del suelo en el área del proyecto Pujal-Coy, San Luis Potosí, México. Investigaciones, 2006.Geográficas,59:26-42.
ROFINELLI, G. La trama del fracking. Consideraciones sobre el rol de los hidrocarburos no convencionales en el marco de la crisis global, ecológica y energética. En L. Rojas (coord.), Neoliberalismo en América Latina. Crisis, tendencias y alternativas. Buenos Aires: CLACSO, 203-222, 2015. Recuperado de http://biblioteca.clacso.edu.ar/clacso/gt/20151203044203/Neoliberalismo.pdf
SALOMONE, M. El fracking en Mendoza, una iniciativa al extremo de lo posible. Perfiles Latinoamericanos, 2021, 29 (57), 85-108.
SECRETARÍA DE ENERGÍA DEL GOBIERNO DE ARGENTINA. Producción de hidrocarburos/yacimientos, 2020. Disponible en:
http://datos.minem.gob.ar/dataset
SHINDELL, D., FALUVEGI, G., KOCH, D., SCHMID, G., UNGER, N. y BAUER, S. Improved attribution of climate forcing to emissions. Science, 2009, 326 (5953), 716-718.
U.S. GEOLOGICAL SURVEY (USGS). Earth Explorer, 2020. Recuperado de
www.earthexplorer.usgs.gov
U.S. NAVAL ACADEMY [USNA]. Landsat Path/Row, 2020. Recuperado de
(https://www.usna.edu/Users/oceano/pguth/md_help/html/landsat_path_row.html).
WEINBERGER, B., GREINERB, L., WALLEIGHC, L. y BROWNA, D. Health symptoms in residents living near shale gas activity: A retrospective record review from the enviromental health proyect. Preventive Medicine Reports, 2017, 8, 112–115.
WILSON, M., DAVIES, R., FOURGER, G., JULIAN, B., STYLES, P., GLUYAS, J., y ALMOND, S. Antropoghenic Earthquakes in UK: A national baseline prior to shale exploitation. Marine and Petroleum Geology, 2015, 68, 1-17.
YING, L. Analyzing TENORM in hydraulic fracturing wastes. International Journal of Environmental Monitoring and Analysis, 2015, 3 (2-1), 1-6.

Published

2023-03-23

How to Cite

Aleman Contreras, U. A., Reyes Hernández, H., van´t Hooft, A. ., & Santacruz de León, G. . (2023). Dinámica espacio-temporal de los cambios en la cubierta vegetal y usos de suelo asociados al fracking en las cuencas de Burgos, México y Neuquina, Argentina. Revista De Geografía Norte Grande, (86). https://doi.org/10.4067/S0718-34022023000300114

Issue

Section

Artículos